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NUMERICAL INVARIANTS OF TOTALLY IMAGINARY

QUADRATIC Z[
√
p ]-ORDERS

JIANGWEI XUE,TSE-CHUNG YANG AND CHIA-FU YU

Abstract. Let A be a real quadratic order of discriminant p or 4p with a prime
p. In this paper we classify all proper totally imaginary quadratic A-orders
B with index w(B) = [B× : A×] > 1. We also calculate numerical invariants
of these orders including the class number, the index w(B) and the numbers
of local optimal embeddings of these orders into quaternion orders. These
numerical invariants are useful for computing the class numbers of totally
definite quaternion algebras.

1. Introduction

Let F be a totally real number field with the ring of integers OF . Let D be a
totally definite quaternion algebra over F and O ⊂ D an OF -order in D. A main
interest in the arithmetic of quaternion algebras is to compute the class number
h(O) of O (for locally free ideal classes). Eichler’s class number formula states that

(1.1) h(O) = Mass(O) + Ell(O),

where Mass(O) is the mass of O, which is (by definition) a weighted sum over all
the ideal classes of O, and Ell(O) is the elliptic part of h(O), which is expressed as
follows:

(1.2) Ell(O) =
1

2

∑

w(B)>1

h(B)(1 − w(B)−1)
∏

p

mp(B).

In the summation B runs through all (non-isomorphic) quadratic OF -orders such
that the field K of fractions can be embedded into D and the index w(B) := [B× :
O×

F ] > 1. The symbol h(B) denotes the class number of B, and for any finite
prime p of F , mp(B) is the number of equivalence classes of optimal embeddings
of Bp := B ⊗OF

OFp
into Op := O ⊗OF

OFp
. We refer to Eichler [4], Vigneras [14,

Chapter V, Corollary 2.5, p. 144] and Körner [7, Theorem 2]) for more details.
One can use the mass formula (cf. [14, Chapter V, Corollary 2.3] and [16, Section

5]) to compute Mass(O). When the order O is not too complicated, for example
if O is an Eichler order, the computation of numbers of local optimal embeddings
is known by Eichler (cf. [14, p. 94]) and Hijikata [6, Theorem 2.3, p. 66]. Also see
Pizer [12, Sections 3-5] for some extensions. A major difficulty in adapting Eichler’s
class number formula is to find all the quadratic OF -orders B with the properties
stated below (1.2). It is not hard to see that the fraction field K of B must be
totally imaginary over F and the information whether K can be embedded into D
is already contained in local optimal embeddings.
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In this paper we classify all totally imaginary quadratic OF -orders B with
w(B) > 1 in the case where F = Q(

√
p ) is a real quadratic field with a prime

number p. We also compute the class number h(B) and the index w(B) of them.
As a consequence of our computations we obtain a formula for h(O) for any Eichler
order O of square-free level in an arbitrary totally definite quaternion algebra over
Q(

√
p ) (see Section 3.8).

Our motivation of computing the class number of quaternion orders comes from
the study of supersingular abelian surfaces over finite fields. We are interested in
finding an explicit formula for the number H(p) of isomorphism classes of (nec-
essarily superspecial) abelian surfaces in the isogeny class over the prime field Fp
corresponding to the Weil p-number

√
p . The endomorphism algebras of these

abelian varieties are isomorphic to the totally definite quaternion algebra D∞1,∞2

over F = Q(
√
p ) which is ramified only at the two real places. When p = 2 or p ≡ 3

(mod 4), the number H(p) is equal to the class number h(O1) of a maximal order
O1 in D∞1,∞2 . When p = 1 (mod 4), we show that H(p) = h(O1)+h(O8)+h(O16),
where O8 and O16 are certain proper A = Z[

√
p ]-suborders of O1 of index 8 and 16,

respectively. (We say O is a “proper” A-order if O∩F = A.) For the non-maximal
cases the generalized class number formula [16, Theorem 1.5] requires to find all
totally imaginary proper quadratic A-orders B with w(B) := [B× : A×] > 1 and
compute the numerical invariants h(B) and w(B) again. These technical issues are
dealt within this paper. The results of this paper will be used in [16] to compute
the number H(p) of superspecial abelian surfaces. See [16, Theorem 1.2] for the
final formula for H(p).

The paper is organized as follows. Section 2 classifies all totally imaginary qua-
dratic fields K over F = Q(

√
p ) with wK := [O×

K : O×
F ] > 1. We express the

class numbers h(K) of these fields K in terms of h(F ) and compute wK . Section 3
classifies all OF -orders B in K with w(B) > 1. We also compute the numerical
invariants h(B) and w(B) of these orders. Section 4 classifies all proper A-orders
B in K with w(B) > 1 when p ≡ 1 (mod 4). We compute the same numerical
invariants of them and the numbers of related local optimal embeddings mentioned
above.

2. Totally imaginary quadratic extensions K/F

In this section, we classify all the totally imaginary quadratic extensions of
Q(

√
p ) that have strictly larger groups of units than O×

Q(
√
p ). Throughout this

section, F denotes a totally real number field with ring of integers OF and group
of units O×

F , and K always denotes a totally imaginary quadratic extension of F .

We write µK for the torsion subgroup of O×
K . It is a finite cyclic subgroup of O×

K

consisting of all the roots of unity in K. Clearly, µF = {±1}. The quotient groups
O×

F /µF and O×
K/µK are free abelian groups of rank [F : Q]− 1 by the Dirichlet’s

Unit Theorem (cf. [11, Theorem I.7.4]).

2.1. Since the free abelian groups O×
F /µF and O×

K/µK have the same rank, the

natural embedding O×
F /µF →֒ O×

K/µK realizes O×
F /µF as a subgroup of O×

K/µK

of finite index, called the Hasse unit index,

(2.1) QK/F := [O×
K/µK : O×

F /µF ] = [O×
K : µKO×

F ].

In particular, O×
F has finite index in O×

K .
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Suppose that µK = 〈ζ2n〉, where ζ2n is a primitive 2n-th root of unity. Let
ι : x 7→ ι(x) be the unique nontrivial element of Gal(K/F ). By [15, Theorem
4.12], QK/F is either 1 or 2. This can be seen in the following way. There is a

homomorphism φK whose image contains µ2
K = φK(µK):

(2.2) φK : O×
K → µK , u 7→ u/ι(u).

One easily checks that φK(u) ∈ µ
2
K if and only if u ∈ µKO×

F , hence QK/F =

[φK(O×
K) : µ2

K ] ≤ 2. Moreover, QK/F = 2 if and only if φK is surjective, i.e. there

exists z ∈ O×
K such that

(2.3) z = ι(z)ζ2n.

We note that (2.2) also implies that

(2.4) u2 ≡ NK/F (u) (mod µK), ∀u ∈ O×
K .

Consider the quotient group O×
K/O×

F . If QK/F = 1, then O×
K = µKO×

F , and

(2.5) O×
K/O×

F
∼= µK/µF = µK/{±1},

which is a cyclic group of order n generated by the image of ζ2n. If QK/F = 2,
there is an exact sequence

(2.6) 1 → (µKO×
F )/O

×
F → O×

K/O×
F → µK/µ2

K → 1.

Let z ∈ O×
K be an element satisfying (2.3). Then

(2.7) z2 = NK/F (z)ζ2n,

so ζ2n ≡ z2 (mod O×
F ). Therefore, O

×
K/O×

F is a cyclic group of order 2n generated

by the image of z in this case. Either way, O×
K/O×

F is a cyclic group. Its order

wK := |O×
K/O×

F | is given by

(2.8) wK =
1

2
|µK | ·QK/F =

{

|µK |/2 if QK/F = 1;

|µK | if QK/F = 2.

For the rest of this section, we assume that F = Q(
√
d ) is a real quadratic field

with square free d ∈ N. We will soon specialize further to the case that F = Q(
√
p )

with a prime p ∈ N. Recall that

OF =

{

Z
[

(1 +
√
d )/2

]

if d ≡ 1 (mod 4);

Z[
√
d ] if d ≡ 2, 3 (mod 4).

The fundamental unit by definition is the unit ǫ ∈ O×
F such thatO×

F = {±ǫa | a ∈ Z}
and ǫ > 1. Note that ǫ is totally positive if and only if NF/Q(ǫ) = 1.

Lemma 2.2. Let ǫ be the fundamental unit of F = Q(
√
d ), and K a totally imag-

inary quadratic extension of F with µK = 〈ζ2n〉. The index QK/F = 2 if and only
if NF/Q(ǫ) = 1 and the equation

(2.9) z2 = ǫ ζ2n

has a solution in K. In particular, if NF/Q(ǫ) = −1, then QK/F = 1.
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Proof. Only the first statement needs to be proved, as the second one follows easily.
The sufficiency is obvious. We prove the “only if” part. Suppose that QK/F = 2.

Let z ∈ O×
K be a representative of a generator of O×

K/µK
∼= Z. By (2.4), O×

F /µF

can be generated by a totally positive unit, namely NK/F (z). Therefore, ǫ must
be totally positive, which happens if and only if NF/Q(ǫ) = 1. Replacing z by 1/z
if necessary, we may assume NK/F (z) = ǫ. By (2.6), there exists an odd number

2c+ 1 ∈ Z such that z = ι(z)ζ2c+1
2n . We further replace z by zζ−c

2n , then it satisfies
equation (2.9). �

2.3. Since [K : Q] = 4, we have ϕ(2n) ≤ 4. The possible n’s are 1, 2, 3, 4, 5, 6.
Moreover, the cases n = 4, 5, 6 can only happen in the following situations:

• if n = 4, then K = Q(ζ8) = Q(
√
−1 ,

√
2 ) and F = Q(

√
2 );

• if n = 5, then K = Q(ζ10) and F = Q(
√
5 );

• if n = 6, then K = Q(ζ12) = Q(
√
3 ,
√
−1 ) and F = Q(

√
3 ).

Lemma 2.4. Let ǫ be the fundamental unit of F = Q(
√
p ), where p ∈ N is a prime

number. Then NF/Q(ǫ) = 1 if and only if p ≡ 3 (mod 4).

Proof. If p = 2, then ǫ = 1 +
√
2 , so NF/Q(ǫ) = −1. By [3, Corollary 18.4bis,

p. 134], if p ≡ 1 (mod 4), the norm of the fundamental unit is −1. On the other
hand, if p ≡ 3 (mod 4), we claim that NF/Q(u) = 1 for any u ∈ O×

F . Indeed, If

u = a + b
√
p has norm −1, then a2 − b2p = −1. Modulo p on both sides, we see

that −1 is a square in Z/pZ, contradicting to the assumption p ≡ 3 (mod 4). �

Proposition 2.5. Suppose that p ≡ 3 (mod 4), and ǫ is the fundamental unit of

F = Q(
√
p ). Then

√

ǫ/2 ∈ F , and
√

ǫ/2 ≡ (1 +
√
p )/2 (mod OF ).

Proof. It is known that ǫ = 2x2 for some x ∈ F when p ≡ 3 (mod 4) (cf. [10,
Lemma 3, p. 91] or [17, Lemma 3.2(1)]). We have (2x)2 = 2ǫ ≡ 0 (mod 2OF ).
Clearly, 2x ∈ OF but x 6∈ OF . On the other hand, 1 +

√
p is the only nonzero

nilpotent element in OF /2OF . So we must have 2x ≡ 1+
√
p (mod 2OF ), and the

second part of the proposition follows. �

Proposition 2.6. Suppose that p ≡ 3 (mod 4). Let ǫ be the (totally positive)
fundamental unit of F = Q(

√
p ), and K = F (

√−ǫ ). Then K = F (
√
−2 ) =

Q(
√
p ,

√
−2 ), and OK = Z[

√
p ,

√−ǫ ].

Proof. By Proposition 2.5, K = Q(
√
p ,

√
−2 ). Let B := Z[

√
p ,
√−ǫ ] = OF [

√−ǫ ] ⊆
OK , and dB = dB/Z be the discriminant of B with respect to Z. To show that
B = OK , it is enough to show that dB coincides with dOK

= dK , the absolute
discriminant of K. We have dK = 4p · (−8) · (−8p) = 28p2 by Exercise 42(f) of [9,
Chapter 2]. On the other hand,

dB = d2F ·NF/Q(dB/OF
) = (4p)2 ·NF/Q(−4ǫ) = 28p2 = dK .

So indeed OK = Z[
√
p ,

√−ǫ ]. �

The following proposition determines QK/F for any totally imaginary quadratic
extension K of F = Q(

√
p ).

Proposition 2.7. Suppose F = Q(
√
p ). Then QK/F = 2 if and only if p ≡ 3

(mod 4), and K is either F (
√
−1 ) = Q(

√
p ,
√
−1 ) or F (

√−ǫ ) = Q(
√
p ,

√
−2 ).
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Proof. By Lemma 2.2 and Lemma 2.4, QK/F = 1 for all K if p = 2 or p ≡
1 (mod 4). Assume that p ≡ 3 (mod 4) for the rest of the proof. Combining
Lemma 2.2 and Proposition 2.5, we see that QK/F = 2 if and only if the equation

(2.10) y2 = 2ζ2n

has a solution in K. By Section 2.3, the possible values of n are 6, 3, 2, 1.
If n = 6, then p = 3 and K = Q(ζ12) = Q(

√
3 ,

√
−1 ). We claim that Q(

√
2 ζ24) =

K. Indeed, Q(
√
2 ζ24) = Q(ζ3,

√
2 ζ8). Since ζ8 =

√
2
2 +

√−2
2 , our claim follows.

Therefore, (2.10) has a solution in K and QK/F = 2 in this case.
Assume that p > 3 for the rest of the proof.
If n = 3, then K = Q(

√
p ,
√
−3 ). If

√
2 ζ12 ∈ K, then it implies that

√
−2 =√

2 ζ4 ∈ K, which is clearly false. Therefore, QK/F = 1 if K = Q(
√
p ,

√
−3 ) with

p > 3.
If n = 2, then K = Q(

√
p ,
√
−1 ). We have (1 +

√
−1 )2 = 2

√
−1 = 2ζ4.

Therefore, QK/F = 2 in this case.

Lastly, suppose that n = 1. Then QK/F = 2 implies that K = F (
√
−2 ) =

Q(
√
p ,

√
−2 ). One easily checks that µK is indeed {±1} so this is also sufficient

for QK/F = 2. �

In the case where F = Q(
√
d ) is an arbitrary real quadratic field and K is

an imaginary bicyclic biquadratic field containing F , the calculation of QK/F is
discussed in [2, Section 2].

2.8. The following table gives a complete list of the extensions K/Q(
√
p ) with

wK = [O×
K : O×

Q(
√
p )] > 1 for all primes p.

p K wK p K wK p > 5 K wK

2
Q(

√
2 ,

√
−1 ) 4

5

Q(
√
5 ,
√
−1 ) 2

p ≡ 1 (4)
Q(

√
p ,
√
−1 ) 2

Q(
√
2 ,

√
−3 ) 3 Q(

√
5 ,
√
−3 ) 3 Q(

√
p ,
√
−3 ) 3

3
Q(

√
3 ,

√
−1 ) 12 Q(ζ10) 5

p ≡ 3 (4)

Q(
√
p ,
√
−1 ) 4

Q(
√
3 ,

√
−2 ) 2 Q(

√
p ,
√
−2 ) 2

Q(
√
p ,
√
−3 ) 3

It is well known that the class numbers (cf. [15, Theorem 11.1])

(2.11) h(Q(ζ8)) = h(Q(ζ10)) = h(Q(ζ12)) = 1.

Using Magma [1], one easily calculates that

h(Q(
√
2 ,
√
−3 )) = h(Q(

√
5 ,

√
−1 )) = h(Q(

√
5 ,
√
−3 )) = 1,(2.12)

h(Q(
√
3 ,

√
−2 )) = 2.(2.13)

2.9. Let Ej = Q(
√−j ) for j = 1, 2, 3, and dEj

be the discriminant of Ej . Suppose
that p is odd, and dF is the discriminant of F = Q(

√
p ). Consider the biquadratic

field Kj := Q(
√
p ,

√−j ), which is the compositum of F with Ej . If p = 3, we
only take K1 and K2. Proposition 2.7 shows the following simple but mysterious
criterion:

(2.14) QKj/F = 1 ⇐⇒ gcd(dF , dEj
) = 1.
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2.10. Suppose for the moment that F = Q(
√
d ) is an arbitrary real quadratic field,

and K is the compositum of F with an imaginary quadratic field E. By the work
of Herglotz [5], if K 6= Q(

√
2 ,

√
−1 ), then

(2.15) h(K) = QK/Fh(F )h(E)h(E′)/2,

where E′ is the only other imaginary quadratic subfield of K distinct from E. In
particular, if F = Q(

√
p ), Kj = Q(

√
p ,

√−j ) and kj = Q(
√−pj ) with j = 1, 2, 3

and p ≥ 5, then

(2.16) h(Kj) =

{

h(F )h(kj) if j = 1, 2 and p ≡ 3 (mod 4);

h(F )h(kj)/2 otherwise.

Here we used the facts that h(Q(
√−j )) = 1 for all j ∈ {1, 2, 3} and QKj/F is

calculated in Proposition 2.7.

2.11. Suppose that p is odd, and K = K1 = Q(
√
p ,

√
−1 ). Let L = Q(

√
p∗ ) ⊂ K,

where p∗ :=
(

−1
p

)

p, and
(

·
p

)

is the Legendre symbol. Then OL = Z ⊕ Zωp, with

ωp := (1+
√
p∗ )/2 ∈ OL. Since gcd(dL, dQ(

√−1 )) = 1, we have OK = OL[
√
−1 ] and

a Z-basis of OK is given by

(2.17)

{

1,
1 +

√
p∗

2
,

√
−1 ,

√
−1 +

√−p∗

2

}

.

We claim that |(OK/2OK)×| = 4
(

2−
(

2
p

))

. Indeed, we have

(2.18) OK/2OK
∼= (OL/2OL)[t]/(t

2 + 1) = (OL/2OL)[t]/((t+ 1)2),

with the isomorphism sending
√
−1 7→ t̄, which denotes the image of t in the

quotient. The isomorphism (2.18) gives rise to an exact sequence

(2.19) 0 → (OL/2OL) → (OK/2OK)× → (OL/2OL)
× → 1.

Note that 2 is unramified in L, and

(2.20) OL/2OL ≃







F2 ⊕ F2 if
(

2
p

)

= 1;

F4 if
(

2
p

)

= −1.

Hence the exact sequence (2.19) splits. More precisely,

(2.21) (OK/2OK)× ≃







(Z/2Z)2 if
(

2
p

)

= 1;

(Z/3Z)⊕ (Z/2Z)2 if
(

2
p

)

= −1.

2.12. Consider the order B1,4 := Z[
√
p ,

√
−1 ] = Z[

√
p∗ ,

√
−1 ] in K = Q(

√
p ,
√
−1 )

with p odd. Since Z[
√
p∗ ]/2OL

∼= F2, we have 2OK ⊂ B1,4, and

(2.22) OK/2OK ⊃ B1,4/2OK
∼= (Z[

√
p∗ ]/2OL)[t]/((t+ 1)2) ∼= F2[t]/((t+ 1)2)

under the isomorphism (2.18). In particular, (B1,4/2OK)× ∼= Z/2Z.
Note that OL/2OL is spanned by the image of 1 and ωp over F2. One easily

checks that the only other ring intermediate to

(2.23) F2[t]/((t+ 1)2) ⊂ (OL/2OL)[t]/((t+ 1)2) = (OL/2OL)⊕ (OL/2OL)(1 + t̄ )
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is F2 ⊕ (OL/2OL)(1 + t̄ ). It follows that B1,2 := Z + Z
√
p + Z

√
−1 + Zy∗p is the

only nontrivial suborder intermediate to B1,4 ⊂ OK , where

y∗p := ωp(1 +
√
−1 ) = (1 +

√
p∗ )(1 +

√
−1 )/2.

However, it is more convenient to define yp := (1 +
√
−1 )(1 +

√
p )/2, then B1,2 =

Z+ Z
√
p + Z

√
−1 + Zyp as well. Note that y2p = (1 + p)

√
−1 /2 +

√−p , so B1,2 =

Z[
√
−1 , yp]. Since B1,2/2OK

∼= F2 ⊕ (OL/2OL)(1 + t̄ ), we have

(B1,2/2OK)× ∼= OL/2OL ≃ (Z/2Z)2.

3. OF -orders in K

We keep the notations of Section 2. In particular, F = Q(
√
p ) and its ring of

integers is denoted by OF . We will classify all the quadratic OF -orders B satisfying
the following two conditions:

(i) the fraction field of B is a totally imaginary quadratic extension K of F ;
(ii) w(B) = [B× : O×

F ] > 1.

Unless specified otherwise, the notation B will be reserved for such orders through-
out this section. The quotient group B×/O×

F is a subgroup of the finite cyclic group

O×
K/O×

F , hence w(B) divides wK = [O×
K : O×

F ]. Therefore, K must be one of the
fields given in the table of Section 2.8.

Proposition 3.1. Suppose that wK is a prime. Then B = OK is the unique
OF -order in K such that w(B) > 1.

Proof. By the table of Section 2.8, wK is a prime only when wK = 2, 3, 5. Then
O×

K/O×
F is a cyclic group of prime order with a nontrivial subgroup B×/O×

F . There-

fore, B×/O×
F = O×

K/O×
F , so B× = O×

K . Then B ⊇ OF [u] for any u ∈ O×
K .

If wK = 5, then F = Q(
√
5 ) and K = Q(ζ10). We have B ⊇ OF [ζ10] ⊇ Z[ζ10].

But Z[ζ10] is the maximal order in K. So B = OK = Z[ζ10].
If QK/F = 2 and wK = 2, then p ≡ 3 (mod 4) andK = F (

√−ǫ ) = Q(
√
p ,
√
−2 ).

Proposition 2.6 shows that OF [
√−ǫ ] = OK is the maximal order in K. So B =

OK = OF [
√−ǫ ].

Suppose that QK/F = 1, p is odd and K 6= Q(ζ10). In other words, we assume
one of the following holds:

• p ≡ 1 (mod 4), and K 6= Q(ζ10);
• p ≡ 3 (mod 4), p 6= 3, and K = F (ζ6) = Q(

√
p ,
√
−3 ).

Then we have K = Q(
√
p ,

√−j ) with j ∈ {1, 3}, which depends on p. By Sec-
tion 2.9, the assumption QK/F = 1 guarantees that the discriminants of Q(

√
p )

and Q(
√−j ) are relatively prime. Let ζ = ζ4 if j = 1 and ζ = ζ6 if j = 3. Then

B ⊇ OF [ζ]. By [8, Proposition III.17], OF [ζ] is the maximal order in K. Therefore
B = OK .

The only remaining case to consider is F = Q(
√
2 ) andK = F (ζ6) = Q(

√
2 ,
√
−3 ).

We note that the discriminants of Q(
√
2 ) and Q(

√
−3 ) are again relatively prime.

So the same argument as above shows that B = OK . �

Lemma 3.2. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,

√
−1 ). Let B ⊆ OK

be a quadratic OF -order with 2 | w(B). Then B1,4 = Z[
√
p ,

√
−1 ] ⊆ B. Moreover,

4 | w(B) if and only if yp = (1 +
√
−1 )(1 +

√
p )/2 ∈ B.
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Proof. If p = 3, then O×
K/O×

F is a cyclic group of order 12, generated by the image

of z =
√
ǫζ12 ∈ O×

K . Since 2 | w(B), we have B ∋ z6 = ǫ3
√
−1 . Then

√
−1 ∈ B×

as ǫ ∈ O×
F ⊂ B×. We have 4 | w(B) if and only if B ∋ z3 = ǫ

√
ǫ ζ8, or equivalently,

B ∋√
ǫ ζ8.

If p > 3 and p ≡ 3 (mod 4), then O×
K/O×

F is a cyclic group of order 4 generated

by z =
√
ǫζ4 . If 2 | w(B), then B ∋ z2 = ǫ

√
−1 , so

√
−1 ∈ B. Moreover, w(B) = 4

if and only if B ∋ z =
√
ǫ ζ8.

It remains to show that
√
ǫ ζ8 ∈ B if and only if yp ∈ B. By Proposition 2.5,

there exists m,n ∈ Z such that
√

ǫ/2 = m+ n
√
p + (1 +

√
p )/2. We then have

√
ǫ ζ8 =

√

ǫ/2 · (
√
2 ζ8) =

(

m+ n
√
p +

1 +
√
p

2

)

(1 +
√
−1 ).

But B already contains Z[
√
p ,

√
−1 ] by the above arguments, so

√
ǫ ζ8 ∈ B if and

only if yp = (1 +
√
−1 )(1 +

√
p )/2 ∈ B. �

Proposition 3.3. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,

√
−1 ). The OF -

orders B ⊆ OK with 2 | w(B) are:

OK , w(OK) = 4 gcd(p, 3);

B1,2 = Z[
√
−1 , yp], w(B1,2) = 4;

B1,4 = Z[
√
p ,

√
−1 ], w(B1,4) = 2.

If p > 3, the above is a complete list of OF -orders in K with w(B) > 1. If p = 3,

there is an extra order B1,3 = Z[
√
3 , ζ6] with w(B1,3) = 3.

Proof. Recall that wK = 4 or 12. Given any B ⊆ OK with w(B) > 1, we have
either 2 | w(B) or w(B) = 3, with the latter case possible only if p = 3.

Suppose that 2 | w(B). Then B ⊇ B1,4 := Z[
√
p ,

√
−1 ] by Lemma 3.2. By

Section 2.12, B1,2 is the only OF -order of index 2 intermediate to B1,4 ⊂ OK . Since
yp 6∈ B1,4, we have w(B1,4) = 2 by Lemma 3.2. On the other hand, 4 | w(B1,2).

So w(B1,2) = 4 if p > 3. Note that ζ12 = (
√
3 +

√
−1 )/2 6∈ B1,2 if p = 3. Hence

w(B1,2) = 4 in this case as well.
Suppose that p = 3, z =

√
ǫζ12 and 3 | w(B). Then B ∋ z4 = ǫ2ζ6 and hence

B ⊇ Z[
√
3 , ζ6]. A Z-basis of B1,3 := Z[

√
3 , ζ6] is given by

{

1,
√
3 , ζ6 =

1 +
√
−3

2
,

√
3 ζ6 =

√
3 + 3

√
−1

2

}

.

One easily checks that [OK : B1,3] = 3. Hence the only other OF -order containing

B1,3 is OK itself. Since
√
−1 6∈ B1,3, we have w(B1,3) = 3. �

For the rest of this section, we study the class numbers h(B) of those non-
maximal orders B with w(B) > 1.

3.4. For the moment let us assume thatK is an arbitrary number field, andB ⊆ OK

is an order in K with conductor f. The class number of B is given by [11, Theorem
I.12.12]

(3.1) h(B) =
h(OK)[(OK/f)

×
: (B/f)

×
]

[O×
K : B×]

.
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We leave it as an exercise to show that [(OK/a)× : (B/a)×] = [(OK/f)× : (B/f)×]
for any nonzero ideal a of OK contained in f. Therefore,

(3.2) h(B) =
h(OK)[(OK/a)

×
: (B/a)

×
]

[O×
K : B×]

.

Lemma 3.5. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,
√
−1 ). Let B1,2 and

B1,4 be the orders in Proposition 3.3. We have

(3.3) h(B1,2) = h(B1,4) =

(

2−
(

2

p

))

h(OK)

if p > 3 and p ≡ 3 (mod 4). If p = 3, then h(B1,2) = h(B1,4) = h(OK).

Proof. By Section 2.12, we have OK ⊃ B1,2 ⊃ B1,4 ⊃ 2OK . So take a = 2OK in
(3.2). It has been shown in Sections 2.11 and 2.12 that

|(OK/2OK)×| = 4

(

2−
(

2

p

))

, |(B1,2/2OK)×| = 4 and |(B1,4/2OK)×| = 2.

On the other hand, [O×
K : B×] = wK/w(B) for B = B1,2 or B1,4. Recall that

wK = 4 if p > 3 and wK = 12 if p = 3. The lemma now follows from Proposition 3.3,
where it has been shown that w(B1,2) = 4 and w(B1,4) = 2. �

3.6. Assume that F = Q(
√
2 ) and K = F (ζ8) = Q(

√
2 ,
√
−1 ). Then wK = 4,

and O×
K/O×

F
∼= Z/4Z. Any B ⊆ OK with w(B) > 1 must contain OF [ζ

2
8 ] =

Z[
√
2 ,
√
−1 ]. By Exercise 42(b) of [9, Chapter 2], a Z-basis of OK is given by

{

1,
√
−1 ,

√
2 , (

√
2 +

√
−2 )/2

}

. Let B = Z[
√
2 ,
√
−1 ], which is a sublattice

of OK of index 2. Therefore, there are no other quadratic OF -orders B
′ in K with

w(B′) > 1 and B′ 6= OK . We have

(3.4) w(OK) = 4 and w(B) = 2.

Note that
√
2OK ⊆ B. The ideal p = (1 + ζ8)OK is the unique prime ideal

above 2. Therefore, OK/
√
2OK is a two-dimensional F2-algebra whose unit group

(OK/
√
2OK)× = (OK/p2)× ∼= Z/2Z. Since [OK : B] = 2, we have B/

√
2OK

∼= F2.
It follows that h(B) = h(OK) = 1.

3.7. Let K = Q(
√
3 ,

√
−1 ) and B1,3 = Z[

√
3 , ζ6]. We have

√
−3OK ⊂ B1,3.

On the other hand,
√
−3OK is a prime ideal in OK with residue field F9. Since

[OK : B1,3] = 3, we have B1,3/
√
3OK

∼= F3. Therefore, h(B1,3) = h(OK) = 1.

3.8. Let D be a totally definite quaternion algebra over F = Q(
√
p ) of discriminant

ideal D ⊂ OF , and O an Eichler order of level N , where N ⊂ OF is a square-free
prime-to-D ideal. The mass formula [14, Chapter V, Corollary 2.3] states that

(3.5) Mass(O) =
1

2
ζF (−1)h(F )

∏

p|D
(N(p)− 1)

∏

p|N
(N(p) + 1) =: M,

where ζF (s) is the Dedekind zeta function of F . For any OF -order B in a quadratic
extension K/F , we define the Artin symbol

(

K

p

)

:=











1 if p splits in K;

−1 if p is inert in K;

0 if p is ramified in K;
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and the Eichler symbol

(

B

p

)

:=

{

(

K
p

)

if p ∤ f(B);

1 otherwise;

where f(B) ⊆ OF is the conductor of B. Define

EK,D,N :=
∏

p|D

(

1−
(

K

p

))

∏

p|N

(

1 +

(

K

p

))

, and

EB,D,N :=
∏

p|D

(

1−
(

B

p

))

∏

p|N

(

1 +

(

B

p

))

.

(3.6)

By the formula [14, p. 94], one has
∏

p

mp(B) = EB,D,N .

For an ideal a ⊂ OF and a square-free integer n, we can write a = a(n)a
(n) as

the product of a n-primary ideal a(n) and a prime-to-n ideal a(n). For any two
OF -ideals a, b, we set

Ca,b := δa,(1)2
s,

where δa,(1) is the usual delta function and s is the number of prime ideals p dividing
b. If there is a unique prime ideal p2 of OF lying over 2 and the conductor f(B) is
p2-primary, then

EB,D,N = EB,D(2),N(2)
· EB,D(2),N (2) = CD(2),N(2)

·EK,D(2),N (2) .(3.7)

We now have everything to compute the class number h(O). Recall that Kj =
Q(

√
p ,

√−j ) for j ∈ {1, 2, 3}. By Section 2.8 and Proposition 3.1, if p ≡ 1 (mod 4)
and p > 5, then the only orders with nonzero contributions to the elliptic part
Ell(O) are OK1 and OK3 , with w(OK1 ) = 2 and w(OK3 ) = 3 respectively. We have

(3.8) h(O) = M +
1

4
h(K1)EK1,D,N +

1

3
h(K3)EK3,D,N

for p ≡ 1 (mod 4) and p > 5. On the other hand, for p ≡ 3 (mod 4) and p > 5, we
have calculated the following numerical invariants of all orders B with w(B) > 1
(see Section 2.8, Propositions 3.1 and 3.3 and Lemma 3.5):

p ≡ 3 (mod 4) OK1 B1,2 B1,4 OK2 OK3

h(B) h(K1)
(

2−
(

2
p

))

h(K1)
(

2−
(

2
p

))

h(K1) h(K2) h(K3)

w(B) 4 4 2 2 3

Therefore, by Eichler’s class number formula we obtain

h(O) =M +
5

8

(

2−
(

2

p

))

h(K1)CD(2),N(2)
EK1,D(2),N (2)+

3

8
h(K1)EK1,D,N +

1

4
h(K2)EK2,D,N +

1

3
h(K3)EK3,D,N

(3.9)

for p ≡ 3 (mod 4) and p > 5. For p = 2, 3, 5, the formulas for h(O) can be obtained
in the same way using Sections 2.8, 3.6 and 3.7.
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4. Quadratic proper Z[
√
p ]-orders in K

Throughout this section, we assume that p ≡ 1 (mod 4) and let A = Z[
√
p ]. It

is an order of index 2 in OF = Z+Z(1+
√
p )/2 with A/2OF

∼= F2. We will classify
all the quadratic proper A-orders B satisfying the following two conditions:

(i) the fraction field of B is a totally imaginary quadratic extension K of F ;
(ii) w(B) := [B× : A×] > 1.

First we need some knowledge about the group A×.

Lemma 4.1. If p ≡ 1 (mod 8), then A× = O×
F . In particular, the fundamental

unit ǫ ∈ A×.

Proof. By our assumption on p, 2OF = p1p2, where p1 and p2 are maximal ideals
of OF with residue fields OF /p1 = OF /p2 = F2. Therefore,

(OF /2OF )
× ∼= (OF /p1)

× × (OF /p2)
×

is a trivial group. We have u ≡ 1 (mod 2OF ) for any u ∈ O×
F . Hence u ∈ A∩O×

F =
A×. �

4.2. If p ≡ 5 (mod 8), 2 is inert in OF , and we have (OF /2OF )
× ≃ F×4 ≃ Z/3Z.

Let U (1) be the kernel of the map O×
F → (OF /2OF )

×. Since (A/2OF )
× is the trivial

subgroup of (OF /2OF )
×, we have A× = U (1). If ǫ ∈ A, then O×

F = A× = U (1);

otherwise, O×
F /A

× ≃ Z/3Z, and O×
F → (OF /2OF )

× is surjective. Here we are in
a more complicated situation since both cases may occur, and whether ǫ ∈ A× or
not can no longer be determined by a simple congruence condition on p. The list
of p ≡ 5 (mod 8) and p < 1000 such that ǫ ∈ A× are given bellow:

37, 101, 197, 269, 349, 373, 389, 557, 677, 701, 709, 757, 829, 877, 997.

This is the sequence A130229 in the OEIS [13]. For any p ≡ 1 (mod 4), we define

(4.1) ̟ := [O×
F : A×] ∈ {1, 3}.

By Lemma 4.1, ̟ = 1 if p ≡ 1 (mod 8).

4.3. Let A×
+ ⊂ A× be the subgroup consisting of all the totally positive elements

of A×. We claim that

(4.2) A×
+ = (A×)2.

If ǫ ∈ A, then A× = O×
F = 〈ǫ〉×{±1}. Since ǫ is not totally positive by Lemma 2.4,

we have A×
+ =

〈

ǫ2
〉

= (A×)2. If ǫ 6∈ A, then A× =
〈

ǫ3
〉

× {±1} by Section 4.2. It

follows that A×
+ =

〈

ǫ6
〉

= (A×)2. So either way, (4.2) holds.

Lemma 4.4. Let K be a totally imaginary quadratic extension of F such that there
exists a quadratic proper A-order B ⊂ K with w(B) > 1. Then K is necessarily
one of the following

K1 = Q(
√
p ,

√
−1 ), K3 = Q(

√
p ,

√
−3 ).

Moreover, if K = K1, then B ⊇ Z[√p ,
√
−1 ].

Proof. By Section 2.3, it is enough to show that µK 6= {±1}, and K 6= Q(ζ10) if
p = 5.

First, if p = 5, the fundamental unit ǫ = (1 +
√
5 )/2 6∈ A, and by Section 4.2,

O×
F /A

× ∼= Z/3Z. Assume K = Q(ζ10), then

{1}  B×/A× ⊆ O×
K/A× = 〈ǭ〉 ⊕

〈

ζ̄10
〉 ∼= Z/3Z⊕ Z/5Z,
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where ǭ and ζ̄10 denote the image of ǫ and ζ10 respectively in the quotient O×
K/A×.

Note that B×/A× can not contain the subgroup 〈ǭ〉 ∼= Z/3Z. Otherwise, B ∋ ǫ,
which implies that B ⊃ Z[ǫ] = OF , contradicting the assumption that B is a
proper A-order. On the other hand, if B×/A× ⊇

〈

ζ̄10
〉 ∼= Z/5Z, then B ∋ ζ10.

Hence B ⊇ Z[ζ10], which is the maximal order in K = Q(ζ10). Again this leads to
a contradiction to the assumption on B. We conclude that K 6= Q(ζ10) if p = 5.

Recall that µK ⊇ φK(B×), where φK : u 7→ u/ι(u) is the map given in (2.2).
Clearly, φK(B×) 6= {1}. Otherwise, B× ⊆ O×

F ∩ B = A×, contradicting the
assumption that w(B) > 1.

Suppose that −1 = φK(u) for some u ∈ B×. We have −u2 = NK/F (u) ∈ A×
+,

the group of totally positive units of A. Since A×
+ = (A×)2 by (4.2), multiplying u

by a suitable element of A×, we may assume that u2 = −1. Therefore, K = K1 =
F (

√
−1 ). On the other hand, if K = K1, then by Section 2.1, φK(O×

K) = µ
2
K =

{±1} since QK/F = 1. Therefore, φK(u) = −1 for all u ∈ B× − A×. We have in

fact shown that B ∋
√
−1 for all proper A-orders in K1 with w(B) > 1.

Lastly, if −1 6∈ φK(B×), then φK(B×) contains a root of unity which is not
in F . In particular, µK 6= {±1} and wK > 1. By Section 2.3, we must have
K = K3 = F (

√
−3 ) since all other possibilities have been exhausted. �

4.5. Suppose that K = K1. It has been shown in Lemma 4.4 that B ⊇ B1,4 =
Z[
√
p ,

√
−1 ]. By Section 2.12,

B1,2 = Z+ Z
√
p + Z

√
−1 + Z(1 +

√
−1 )(1 +

√
p )/2

is the only other proper A-order that contains B1,4. The class numbers of B1,2 and
B1,4 can be calculated exactly in the same way as in Lemma 3.5. Let B be either

B1,2 or B1,4. If ǫ ∈ A, then O×
K/A× = O×

K/O×
F

∼= Z/2Z. Hence B× = O×
K . If

ǫ 6∈ A×, O×
K/A× ∼= Z/6Z, with the cyclic subgroup of order 3 generated by ǭ. Since

ǫ 6∈ B, we must have B×/A× ∼= Z/2Z in this case as well. Therefore,

(4.3) w(B1,2) = w(B1,4) = 2.

Using [O×
K : A×] = 2̟, we obtain

(4.4) h(B1,2) =
1

̟

(

2−
(

2

p

))

h(OK1) and h(B1,4) =
2

̟

(

2−
(

2

p

))

h(OK1).

4.6. Suppose that K = K3. By Exercise 42 of [9, Chapter 2], a Z-basis of OK3 is

(4.5)

{

1, ωp =
1 +

√
p

2
, ζ6 =

1 +
√
−3

2
, ωpζ6 =

(1 +
√
p )(1 +

√
−3 )

4

}

.

Note that 2 is inert in L := Q(ζ6) = Q(
√
−3 ) ⊂ K. There are two primes p1, p2

above 2OL in K. Both have residue fields OK/p1 ≃ OK/p2 ≃ F4. Therefore,
OL/2OL ≃ F4 embeds diagonally1 into

(4.6) OK/2OK
∼= (OK/p1)× (OK/p2) ≃ F4 × F4.

Suppose that B ⊇ B3,4 := Z[
√
p , ζ6]. Since B3,4/2OK is a 2-dimensional F2-

vector space spanned by the images of 1 and ζ6, we have a canonical isomorphism

1Since the isomorphisms OK/pi ≃ F4 is not canonical, the diagonal of (OK/p1) × (OK/p2)
depends on the choice of (OK/p1) ≃ (OK/p2). Here both of them are identified naturally with
OL/2OL. In Section 4.8, we have a different diagonal. However, whichever diagonal we choose,
the prime field A/2OF

∼= F2 embeds canonically in it.
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B3,4/2OK
∼= OL/2OL. The only other subring of F4 × F4 containing the diagonal

is F4 ×F4 itself. It follows that B3,4 is the only proper A-order in K containing ζ6.
We calculate the class number of B3,4 using (3.2) with a = 2OK . It has already

been shown that (B3,4/2OK)× ≃ F×4 ≃ Z/3Z, and
(4.7) (OK/2OK)× ∼= (OK/p1)

× × (OK/p2)
× ≃ (Z/3Z)2.

If ǫ ∈ A, then O×
K = B×

3,4; otherwise, O
×
K/B×

3,4 is a cyclic group of order 3, generated
by the image of ǫ. It follows that

(4.8) w(B3,4) = 3, h(B3,4) =
3h(OK3)

̟
=

{

3h(OK3) if ǫ ∈ A;

h(OK3) if ǫ 6∈ A.

4.7. Suppose that K = K3 = Q(
√
p ,
√
−3 ), and ̟ = 1. In other words, we assume

ǫ ∈ A× and O×
F = A×. For example, this is the case if p ≡ 1 (mod 8) by Lemma 4.1.

For any quadratic proper A-order B with w(B) > 1, we have

{1}  B×/A× ⊆ O×
K/A× ≃ Z/3Z.

Hence, B× = O×
K , and B ⊇ Z[

√
p , ζ6]. It follows that B3,4 is the only proper

A-order with w(B) > 1 in this case.

4.8. Suppose that K = K3 = Q(
√
p ,

√
−3 ), and ̟ = 3. By an abuse of notation,

we still write ǫ and ζ6 for their images in O×
K/A×. Then

{1}  B×/A× ⊆ O×
K/A× = 〈ǫ, ζ6〉 ≃ (Z/3Z)2.

Since ǫ 6∈ B, B×/A× is one of the following cyclic subgroup of order 3 in O×
K/A×:

〈ǫζ6〉 ,
〈

ǫζ−1
6

〉

, 〈ζ6〉 .
The case B ∋ ζ6 has already been treated in the previous subsections. So we

focus on the orders

B3,2 := A[ǫζ6] = Z[
√
p , ǫζ6], B′

3,2 := A[ǫζ−1
6 ] = Z[

√
p , ǫζ−1

6 ].

Clearly B′
3,2 coincides with the complex conjugation of B3,2.

Since (ǫζ6)
3 = −ǫ3 ∈ A, the order B3,2 is generated as a A-module by the set

{1, ǫζ6, ǫ2ζ26}. We claim that B3,2 ⊃ 2OK . A Z-basis of OK is given in (4.5).
Clearly, 2 ∈ A and 2ωp ∈ A with ωp = (1 +

√
p )/2. Let a = TrF/Q(ǫ) and recall

that NF/Q(ǫ) = −1, we have ǫ2 = aǫ+ 1. Therefore,

ǫ2ζ26 = (aǫ+ 1)(ζ6 − 1) = aǫζ6 + ζ6 − aǫ− 1.

It follows that B3,2 is also generated over A by {1, ǫζ6, ζ6 − aǫ}. Since 2aǫ ∈ A, we
have 2ζ6 = 2(ζ6 − aǫ) + 2aǫ ∈ B3,2. Lastly, we need to show that 2ωpζ6 ∈ B3,2.
Since ǫ 6∈ A, there exists x ∈ A such that ǫ = x+ωp. Note that 2xζ6 ∈ B3,2 because
2ζ6 ∈ B3,2, so 2ωpζ6 = 2(ǫ − x)ζ6 = 2ǫζ6 − 2xζ6 ∈ B3,2. This finishes the proof of
our claim.

Next, we show that B3,2 and B′
3,2 are indeed proper A-orders and calculate their

class numbers. Since p ≡ 5 (mod 8), we have OF /2OF ≃ F4, which is generated by
the image of ǫ over A/2OF

∼= F2. Denote this image by ǭ. Recall that OK = OF [ζ6],
so

OK/2OK ≃ F4[t]/(t2 − t+ 1) ≃ F4 × F4,
sending t 7→ (ǭ, ǭ + 1). One checks that B3,2/2OK = F4 × F2, and B′

3,2 = F2 × F4.
In particular, they do not contain the diagonal of F4 × F4, which is identified with
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OF /2OF . Thus both B3,2 and B′
3,2 are proper A-orders of index 2 in OK = OK3 ,

conforming with the convention of our notations. In particular,

(4.9) w(B3,2) = w(B′
3,2) = 3.

Using (3.2), one sees that

(4.10) h(B3,2) = h(B′
3,2) = h(OK3).
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